5,449 research outputs found

    Ultralong-Range Rydberg Molecules in a Divalent-Atomic System

    Full text link
    We report the creation of ultralong-range Sr2_2 molecules comprising one ground-state 5s25s^2 1S0^1S_0 atom and one atom in a 5sns5sns 3S1^3S_1 Rydberg state for nn ranging from 29 to 36. Molecules are created in a trapped ultracold atomic gas using two-photon excitation near resonant with the 5s5p5s5p 3P1^3P_1 intermediate state, and their formation is detected through ground-state atom loss from the trap. The observed molecular binding energies are fit with the aid of first-order perturbation theory that utilizes a Fermi pseudopotential with effective ss-wave and pp-wave scattering lengths to describe the interaction between an excited Rydberg electron and a ground-state Sr atom.Comment: 5 pages, 2 figure

    Probing Nonlocal Spatial Correlations in Quantum Gases with Ultra-long-range Rydberg Molecules

    Full text link
    We present photo-excitation of ultra-long-range Rydberg molecules as a probe of spatial correlations in quantum gases. Rydberg molecules can be created with well-defined internuclear spacing, set by the radius of the outer lobe of the Rydberg electron wavefunction RnR_n. By varying the principal quantum number nn of the target Rydberg state, the molecular excitation rate can be used to map the pair-correlation function of the trapped gas g(2)(Rn)g^{(2)}(R_n). We demonstrate this with ultracold Sr gases and probe pair-separation length scales ranging from Rn=1400−3200R_n = 1400 - 3200 a0a_0, which are on the order of the thermal de Broglie wavelength for temperatures around 1 μ\muK. We observe bunching for a single-component Bose gas of 84^{84}Sr and anti-bunching due to Pauli exclusion at short distances for a polarized Fermi gas of 87^{87}Sr, revealing the effects of quantum statistics.Comment: 6 pages, 5 figure

    Creation of Rydberg Polarons in a Bose Gas

    Get PDF
    We report spectroscopic observation of Rydberg polarons in an atomic Bose gas. Polarons are created by excitation of Rydberg atoms as impurities in a strontium Bose-Einstein condensate. They are distinguished from previously studied polarons by macroscopic occupation of bound molecular states that arise from scattering of the weakly bound Rydberg electron from ground-state atoms. The absence of a pp-wave resonance in the low-energy electron-atom scattering in Sr introduces a universal behavior in the Rydberg spectral lineshape and in scaling of the spectral width (narrowing) with the Rydberg principal quantum number, nn. Spectral features are described with a functional determinant approach (FDA) that solves an extended Fr\"{o}hlich Hamiltonian for a mobile impurity in a Bose gas. Excited states of polyatomic Rydberg molecules (trimers, tetrameters, and pentamers) are experimentally resolved and accurately reproduced with FDA.Comment: 5 pages, 3 figure

    Theory of excitation of Rydberg polarons in an atomic quantum gas

    Get PDF
    We present a quantum many-body description of the excitation spectrum of Rydberg polarons in a Bose gas. The many-body Hamiltonian is solved with functional determinant theory, and we extend this technique to describe Rydberg polarons of finite mass. Mean-field and classical descriptions of the spectrum are derived as approximations of the many-body theory. The various approaches are applied to experimental observations of polarons created by excitation of Rydberg atoms in a strontium Bose-Einstein condensate.Comment: 14 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1706.0371

    The heats of formation of the haloacetylenes XCCY [X, Y = H, F, Cl]: basis set limit ab initio results and thermochemical analysis

    Full text link
    The heats of formation of haloacetylenes are evaluated using the recent W1 and W2 ab initio computational thermochemistry methods. These calculations involve CCSD and CCSD(T) coupled cluster methods, basis sets of up to spdfgh quality, extrapolations to the one-particle basis set limit, and contributions of inner-shell correlation, scalar relativistic effects, and (where relevant) first-order spin-orbit coupling. The heats of formation determined using W2 theory are: \hof(HCCH) = 54.48 kcal/mol, \hof(HCCF) = 25.15 kcal/mol, \hof(FCCF) = 1.38 kcal/mol, \hof(HCCCl) = 54.83 kcal/mol, \hof(ClCCCl) = 56.21 kcal/mol, and \hof(FCCCl) = 28.47 kcal/mol. Enthalpies of hydrogenation and destabilization energies relative to acetylene were obtained at the W1 level of theory. So doing we find the following destabilization order for acetylenes: FCCF >> ClCCF >> HCCF >> ClCCCl >> HCCCl >> HCCH. By a combination of W1 theory and isodesmic reactions, we show that the generally accepted heat of formation of 1,2-dichloroethane should be revised to -31.8±\pm0.6 kcal/mol, in excellent agreement with a very recent critically evaluated review. The performance of compound thermochemistry schemes such as G2, G3, G3X and CBS-QB3 theories has been analyzed.Comment: Mol. Phys., in press (E. R. Davidson issue

    Electron attachment to valence-excited CO

    Get PDF
    The possibility of electron attachment to the valence 3Π^{3}\Pi state of CO is examined using an {\it ab initio} bound-state multireference configuration interaction approach. The resulting resonance has 4Σ−^{4}\Sigma^{-} symmetry; the higher vibrational levels of this resonance state coincide with, or are nearly coincident with, levels of the parent a3Πa^{3}\Pi state. Collisional relaxation to the lowest vibrational levels in hot plasma situations might yield the possibility of a long-lived CO−^- state.Comment: Revtex file + postscript file for one figur

    Controlling the accuracy of the density matrix renormalization group method: The Dynamical Block State Selection approach

    Full text link
    We have applied the momentum space version of the Density Matrix Renormalization Group method (kk-DMRG) in quantum chemistry in order to study the accuracy of the algorithm in the new context. We have shown numerically that it is possible to determine the desired accuracy of the method in advance of the calculations by dynamically controlling the truncation error and the number of block states using a novel protocol which we dubbed Dynamical Block State Selection (DBSS). The relationship between the real error and truncation error has been studied as a function of the number of orbitals and the fraction of filled orbitals. We have calculated the ground state of the molecules CH2_2, H2_2O, and F2_2 as well as the first excited state of CH2_2. Our largest calculations were carried out with 57 orbitals, the largest number of block states was 1500--2000, and the largest dimensions of the Hilbert space of the superblock configuration was 800.000--1.200.000.Comment: 12 page
    • …
    corecore